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A renormalization-group analysis is carried out of the long-time behavior of random walks in a one-
dimensional lattice consisting of three kinds of bonds generated by a deterministic inflation rule. The
random walker is subject to a local drift force, depending on the kind of bond it traverses. The mean-
square displacement after time ¢ is found to scale as t2* where the exponent v is nonuniversal and de-
pends continuously on the magnitude of the drift force. The model studied is one of a general class of

systems that exhibits similar behavior.

PACS number(s): 05.40.+j, 05.60.+w, 66.30.Dn

A wide range of problems in such diverse fields as
physics, chemistry, metallurgy, and ecology can be
mapped onto a random walk. In the physical sciences
alone, problems involving reactions, noise, fluctuations,
relaxation, and transport may all be described by means
of random-walk processes [1]. In this paper, we show
that nonuniversal anomalous diffusion can occur on a
one-dimensional chain with deterministic position-
dependent local drift forces. Previous studies [2-11]
have considered classical diffusion on a random chain and
have found a variety of behaviors for the scaling of the
mean-square displacement (x2(¢))~t?" ranging from
v=0 [{x*(#))~(Int)*] to v=1 and also nonuniversal
behavior, where v depended continuously on the proba-
bility distribution of the local drift forces [8]. In contrast,
our model has no randomness and is a simple example of
a general class of deterministic models that exhibits such
behavior. It corresponds to diffusion in a landscape that
is neither smooth (yielding normal diffusion) nor random-
ly rugged [3], but in between. Our conclusions are based
on a renormalization-group analysis.

The master equation for diffusion is
P (t +1)=P, () + W, , 1Py () + W, . 1P _1(2)
(W g1,x T We—1,x)P:(2), (1)
where P, (t) denotes the probability of the walker being at

site x at time ¢ and W, , is the hopping probability for
going from site y to site x. We define the initial condition

as Px(t——‘0)=5x,x0 and using the transform

P (0)= 37, (1+w) 7P, (1) we rewrite Eq. (1) as

(axw+Wx+l,x+Wx—l,x)Fx
:Wx,x*lpx+1+Wx,x—lﬁx—1+8x’x0 ’ (2)

where a, is a (possibly site-dependent) coefficient that is
initially equal to 1. The long-time behavior of the ran-
dom walk is obtained in the w—0 limit. In our subse-
quent analysis, we will neglect higher-order corrections in
 that contribute to corrections to the leading scaling be-
havior.

To specify the model, we need to assign W, ,. Our
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model has three kinds of bonds denoted by +, —, and O.
When the bond connecting x and x +1 is a + bond, we
let W,, . =W_; Wy x=W,. For a — bond,
Wex+1=W4 and W, =W_, whereas for the 0
bond, W,, =W, =W, We choose W,=1,
without any loss of generality. Note that the + and —
bonds have asymmetric hopping probabilities. We
choose the ratios W, /W_ and W_ /W_ to be equal
and denote the ratio by 7. r is a measure of the local drift
force. Finally, the arrangement of +’s, —’s, and O’s is
determined by a deterministic inflation scheme. A chain
of length 2L is obtained from a chain containing L bonds
by the following substitutions: +-—+0, —— —0, and
0— + —. For example, the +— +0 denotes that each
+ bond is replaced by a + bond followed by a O bond.
Thus starting from one bond O, one gets +—, +0—0,
+0-+ — —0+ —, etc. after successive applications.

We now envisage carrying out a decimation of the
one-dimensional chain. The decimation entails reversing
the inflation scheme by eliminating every other site and
collapsing pairs of bonds into a renormalized bond. On
renormalization, the ratio r is preserved so that, for a
given r, only W, and W_ are independent variables.
Further, since there are three kinds of bonds, there are
nine possible combinations of local environments of two
successive bonds that one needs to consider. However,
the inflation scheme does not lead to any ++ or 00
nearest-neighbor bonds, so that there remain only seven
relevant local environments making a, in Eq. (2) a
seven-component vector a@. The decimation can be car-
ried out explicitly leading to nine renormalization-group
recursion relations as follows:

W WL +W,.
oW+ W,

’ (3)

- W,.+W

W:Lz_:__i_l_ , 4)
W,+1 W,

a=T(W_, W, )a, (5)

where a is a seven-component vector and T is a 7X 7 ma-
trix. There is no a dependence in Egs. (3) and (4), since
we are interested in the leading behavior in the
®—0 limit. Even if one chooses W, =W_, initially,
they become unequal after renormalization. After deci-
mation, the chain initially labeled by sites
1,2,...,2x,2x +1,...,2N now has N sites. The xth
site after decimation corresponds to the (2x)th site before
decimation. We find after one decimation that there is a
scaling form for P given by

P(a'o,W W )=AW, W, )P, (ac, W, W),
6

where AW W )=W_ W, /(W,+W,). Letting
a,,Qy, . ..,0, represent the pairs —0, 0+, +0, 0—,
+—, —+, and — —, respectively, the nonzero matrix
elements of T are (dropping the subscript + in W, and
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wW+w 1 L WHW
T“:_‘_“_— — T12= — ) T15-—r/W,
ww 1+W wWw
T = W+W r S W+Ww 1
Porww R W aw w
_r+ww+w
T71 =
rWw 1+W
Te;=Ty=T3=T54,=T4=T34=Ty,
_ T,
Ty= W I Tis, Tys=Tys, T5;=Ty ,
T23 r
537 w Te3=Ty , and T =T4—

It is straightforward to evaluate the fixed points of (3)
and (4). The fixed-point values of W* and W?* are
W% =rW?% and W% =1(V5+4/r —1). Furthermore,
this fixed pont is attractive. Thus the exponent v can be

. determined by diagonalizing the matrix T evaluated at

* and W?*. Indeed, following the standard definition
[12] v is related to the largest eigenvalue A by
v=1In2/InA and is found to be

v(r)={log,[(V5+4/r +1)(V'5+4r +1)/4]1} ' . (7)

We note that v(r)=v(1/r). The Laplace transform
of (x%1)), __the mean-square displacement,
o 'RYaw, W, ,W,), scales as in Eq. (6) with P, re-
placed by R and A(W ., W, ) by L (to leading order).
Thus R ~w ¥ or {x%(t))!/2~¢", where v is given in Eq.
(7). Following the treatment in Ref. [13], it is straightfor-
ward to show that the probability of return to the origin,
Pxo(t), averaged over all initial positions x,, scales as

1/t” with the same v as in the above equation.

We now turn to a special case. We visualize starting
the inflation scheme with a + or — bond and obtaining a
semi-infinite lattice. We start a walker on the first site—
we assume no sites are present on the left and thus the
walker can initially move only to the right or stay where
it is. Equations (3)—(6) still hold with one significant
simplification: the functions P, and P,, in Eq. (6) be-
come one and the same function P, when x =0, which
physically denotes the probability that the walker returns
to the origin. As before, we consider Eq. (6) at the fixed-
point values of W?* and W?*. Iterating the equation
many times so that the leading eigenvalue dominates, we
find that the probability of returning to the origin scales
ast~ v, where

vi=1+v(r)In4*/1n2

=1—v(r)logzz—gj_‘;’/r—_'_1 (8)
and A*= A(W?* ,W?% ). Substituting the value of v from
Eq. (7), one finds the simple result that v'(r)+v'(1/r)=1.

It is interesting to note that if the +, —, and O bonds
in our deterministic chain were distributed randomly, the
behavior of the random walker would be qualitatively
different and be given by the Sinai result [3]
(x*t))~(1Int)*. Physically [6], the origin of the Sinai
result stems from the fact that the imbalance between the
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number of + bonds and — bonds over a length scale L
scales as V'L from simple random-walk arguments. Be-
cause of the opposing local drift in the + and — bonds,
this corresponds to a barrier that scales as V'L leading to
an activated result, 7~e"L, or equivalently that a
characteristic length traversed scales as (Inz)%. In a simi-
lar vein, our results may be understood simply by noting
that the arrangement of the +, —, and O bonds resulting
from the inflation rule is such that the maximum imbal-
ance [14] between the number of + and — bonds over a
length scale L scales as InL corresponding to a barrier
scaling as (1/v)InL, with v <1 and depending on the de-
gree of asymmetry r. This, in turn, leads to the result
7~ exp[(InL)/v] or {x*4(¢)) ~t>*(r). (We have been un-
successful in deriving the expression for v(r) [Eq. (7)]
with similar hand-waving arguments.) Thus our deter-
ministic model is merely one in a class of models that ex-
hibit nonuniversal anomalous diffusion. Indeed, we have
verified with computer simulations that another model
(that is not amenable to exact renormalization-group
analysis) with the +, —, and O on the sites instead of on
the bonds also exhibits qualitatively similar behavior.
There is an infinite class of models that one may readi-
ly construct with the generic nonuniversal behavior.
Specifically, all models obtained by replacing a given
bond of our model with a sequence of 1, bonds such that
a +(0) bond’s replacement has an imbalance of £n(0)
with ny =1 can be readily mapped into our model with a
“prefacing” transformation. Such a transformation
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would consist of an exact replacement of the 1, bonds by
an effective bond using a decimation technique. Other
deterministic inflation rules such as +—+—+,
—— —+—, 0—+0— would also result in novel behav-
ior. It would be interesting to determine whether a ran-
dom arrangement of the +, —, and O bonds but with a
constraint limiting the growth of the imbalance between
+ and — bonds to InL would also exhibit anomalous be-
havior or merely that of a regular random walk. It has
been suggested that the case where the +, —, and 0O
bonds are distributed randomly corresponding to a ran-
dom walk in a random environment may be applicable to
the diffusion of particles in the presence of flow in a
porous medium. It would be interesting to find experi-
mental realizations of our deterministic model.

We conclude by noting that Golden and co-workers
[15] have studied diffusion in a quasiperiodic one-
dimensional system and find that for a dense set of in-
commensurate potentials, the velocity-autocorrelation
function decays slower than 1/¢'* € for any € > 0.
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